standard library
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202211259179.3 (22)申请日 2022.10.14 (71)申请人 国网四川电力送变电建 设有限公司 地址 610000 四川省成 都市成华区建 设南 支路2号 (72)发明人 阳建 李刚 景文川 徐源 王涛 黄欠 黄鹏 余游 王泽贵 (74)专利代理 机构 成都行之专利代理事务所 (普通合伙) 51220 专利代理师 史丽红 (51)Int.Cl. G06V 10/764(2022.01) G06V 10/774(2022.01) G06V 10/82(2022.01) G06V 10/40(2022.01)G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称 一种基于深度学习的地理信息提取方法及 系统 (57)摘要 本发明公开了一种基于深度学习的地理信 息提取方法及系统, 属于图像处理技术领域; 用 三维图像数据结合已有的地图数据, 通过深度学 习方法训练得到网络分类模型, 在训练网络分类 模型前先对三维图像数据进行一系列的预处理 操作得到梯度向量, 将三维图像数据中小结构的 常规地图上无法准确描述显示的地理信息暴露 出来, 在通过深度学习方法来训练构建网络分类 模型, 卷积神经网络可以很方便提取三维图像数 据中判别性较高的信息, 通过网络分类模型对待 提取图像识别提取时能够得到更加准确的地理 信息分类结果, 为张牵场的选址提供准确的地理 依据; 由于网络分类模型具有良好的训练基础, 使得三维的待提取图像也能够快速精准的提取 出所需地理信息 。 权利要求书2页 说明书6页 附图2页 CN 115546551 A 2022.12.30 CN 115546551 A 1.一种基于深度学习的地理信息提取 方法, 其特 征在于, 包括: 步骤一: 获取目标区域的三维图像数据; 步骤二: 对三维图像数据预处 理后切片处 理得到N个图像数据; 步骤三: 计算出各图像数据的梯度 幅值图像, 并对梯度 幅值图像进行分割得到区域图 像; 步骤四: 计算每个区域图像的梯度向量后输入卷积神经网络进行训练得到网络分类模 型; 步骤五: 将待提取图像输入网络分类模型进行识别提取 得到该图像的地理信息 。 2.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述预 处理过程为将三维图像数据投影得到二维图像数据。 3.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 梯度幅 值图像的获取 方法为: 基于图像数据的像素点计算出x方向的梯度Dx和y方向的梯度Dy; 基于x方向的梯度Dx和y方向的梯度Dy根据式 计算该像素点的图像梯度 计算出所有像素点的图像梯度 后得到梯度幅值图像。 4.根据权利要求3所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 像素点 在x方向的梯度Dx和y方向的梯度Dy通过下式计算: 式中x和y为像素点在图像数据上的横坐标和纵坐标。 5.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述 区 域图像的获取方法包括: 用分水岭算法对梯度幅值图像进 行分割得到多个区域不同的图像 块, 对每个图像块进行 所述区域类别的标注得到区域图像。 6.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 区域图 像的梯度方向计算方法为: 区域图像上的像素点 i的坐标为(n, m); 用像素点 i的梯度方向 向量为 以区域图像上 所有像素点的梯度方向 向量表示该区域图像的梯度向量。 7.根据权利要求1所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 所述待 提取图像为无 人机测量的三维地理数据。权 利 要 求 书 1/2 页 2 CN 115546551 A 28.根据权利要求7所述的一种基于深度 学习的地理信 息提取方法, 其特征在于, 先对待 提取图像执 行步骤二和步骤三后得到待提取图像的区域图像; 再计算待提取图像各区域图像的梯度向量后输入网络分类模型进行识别提取。 9.一种基于深度学习的地理信息提取系统, 应用于权利要求1 ‑8任意一项所述的基于 深度学习的地理信息提取方法, 包括: 采集模块、 预 处理模块、 计算模块、 训练模块和提取模 块; 采集模块用于获取目标区域的三维地图数据; 预处理模块用于对三维地图数据预处 理后切片处 理得到N个图像数据; 计算模块用于计算出各图像数据的梯度幅值图像, 并对梯度幅值图像进行分割得到区 域图像; 训练模块用于对区域图像计算梯度方向后输入卷积神经网络进行训练得到网络分类 模型; 提取模块用于将待提取图像输入网络分类模型进行识别提取 出该图像的地理信息 。 10.一种非暂态计算机可读存储介质, 其上存储有计算机指令, 其特征在于, 该指令被 处理器执行时实现权利要求1 ‑8中任一项所述的方法的步骤。权 利 要 求 书 2/2 页 3 CN 115546551 A 3
专利 一种基于深度学习的地理信息提取方法及系统
文档预览
中文文档
11 页
50 下载
1000 浏览
0 评论
0 收藏
3.0分
赞助2.5元下载(无需注册)
温馨提示:本文档共11页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2.5元下载
本文档由 SC 于
2024-02-18 22:24:38
上传分享
举报
下载
原文档
(599.0 KB)
分享
友情链接
GB-T 37962-2019 信息安全技术 工业控制系统产品信息安全通用评估准则.pdf
GB-T 13749-2022 冲击式打桩机 安全操作规程.pdf
信通院 数字营销异常流量研究报告-2022年.pdf
GB-T 31988-2015 印制电路用铝基覆铜箔层压板.pdf
DB31-T 616-2023 泵系统节能改造技术规范 上海市.pdf
T-CES 184—2022 中低压配电网快速插拔电缆连接器配置技术导则.pdf
OWASP SAMM中文Alpha版.pdf
GB-T 31538-2015 混凝土接缝防水用预埋注浆管.pdf
GB-T 28583-2012 供电服务规范.pdf
信通院 全球数字治理白皮书 2023年.pdf
GB-T 35391-2017 无损检测 工业计算机层析成像(CT)检测用空间分辨力测试卡.pdf
GB-T 30297-2013 氯碱工业用全氟离子交换膜 应用规范.pdf
GB-T 24507-2020 浸渍纸层压实木复合地板.pdf
GB-T 42453-2023 信息安全技术 网络安全态势感知通用技术要求.pdf
DL-T 2015-2019 电力信息化软件工程度量规范.pdf
国内外数据治理模型对比分析.pdf
GB-T 41266-2022 网络关键设备安全检测方法 交换机设备.pdf
青藤云安全 关键信息基础设施云安全指南.pdf
DB31-T 1385-2022 科技成果分类评价和价值潜力评价规范 上海市.pdf
GB-T 9111-2015 桑蚕干茧试验方法.pdf
1
/
11
评价文档
赞助2.5元 点击下载(599.0 KB)
回到顶部
×
微信扫码支付
2.5
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。